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ABSTRACT

Variational bounds, both upper and lower, are found for the equivalent spring
constant of a double-strap joint which represents a sub-element of bonded repairs to
cracked structure. Conservative estimates of the equivalent spring constant, needed for
accurate design, are obtained from variational analyses of the joint. Estimates from
various analytical models of varying level of approximation were obtained. Simpler
expressions for the spring constant resulted from relaxing certain assumptions,
however, the theoretical guarantee of a true upper or lower bound was lost. Spring
constant estimates were compared with finite-element model results and so the fidelity
of the variational bounds, specially for the simplified analyses, could be established.
An improved formula is proposed for use in design procedures in RAAF C5033.
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Variational Bounds for the Equivalent Spring
Constants for Bonded Repairs

Executive Summary

Bonded composite repairs are an effective and cost-efficient means of restoring the life
of cracked metallic aircraft components. The Aeronautical and Maritime Research
Laboratory (AMRL) has used this technique for over 25 years to repair damaged Royal
Australian Air Force (RAAF) aircraft. A critical step in the repair design process is to
obtain an accurate estimate of the stress-intensity factor associated with the crack in
the metallic component after application of the repair. In the initial design stage,
analytical formulae are used to obtain these estimates.

This report evaluates various analytical models (some developed by the authors) that
can be used to obtain post-repair stress-intensity-factor estimates through the concept
of equivalent spring constants. The bonded composite repair can be thought of as a
series of springs resisting the opening of the underlying crack when a load is applied.
The springs are characterised by a spring constant and the validity of the various
models is explored through consideration of this constant. Of particular concern is that
the models provide truly conservative estimates (an upper bound for the spring
constant) that can reliably be used in the design process. For this reason, a
complementary energy functional for the bonded repair was constructed with the use
of either stress or displacement based potentials and a variational analysis undertaken
to provide an upper or lower bound respectively.

The most suitable model for design purposes - one which provides conservative
design estimates and is not too mathematically complex - was identified. This model
will be proposed to the RAAF for inclusion in RAAF Engineering Standard C5033 -
"Composite Materials and Adhesive Bonded Repairs".
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1. Introduction

Bonded composite repairs are an effective and cost-efficient means of restoring the life
of cracked metallic aircraft components. The Aeronautical and Maritime Research
Laboratory (AMRL) has used this technique [11 for over 25 years to repair damaged
Royal Australian Air Force (RAAF) aircraft. A critical step in the repair design process
is to obtain an accurate estimate of the stress intensity factor associated with the crack
in the metallic component after application of the repair. In the initial design stage,
analytical formulae are used to obtain these estimates.

The purpose of this paper is to assess the accuracy of the current technique and to
explore other analytical techniques that might provide improved estimates. Truly
conservative estimates are desirable for the initial design stage and the conservative
nature of the estimates is assessed through the concept of variational bounds.
Variational bounds for the equivalent spring constant of a bonded repair arise from
minimising the complementary energy functional when either stress (lower bound) or
displacement potentials (upper bound) are employed.

The accuracy of the various models is established by comparison with finite-element
analysis results that are taken as "exact". A second criterion by which the models are
judged is the simplicity of the expressions obtained for the design parameters of
interest. Solutions based on prescribed stress potentials that satisfy the equilibrium
equations of continuum mechanics, for instance, may yield accurate values for the
equivalent spring constant of the repair scheme but may be very complex to evaluate.
By relaxing certain assumptions simpler but still accurate solutions may be obtained.
However, the theoretical guarantee of a true lower bound is lost.

An important aspect of establishing. the accuracy of the various analytical models was
to consider isotropic and orthotropic adherend joints having a range of adherend
thicknesses. Some models are accurate for only a small range of adherend thicknesses
so it was necessary to consider a wide range adherend thicknesses.

The plan of the report is as follows: in Section 2 the double-strap joint (Figures 1 and 2),
which is representative of typical bonded repairs, is described, the concept of the
equivalent spring constant is summarised and the existence of variational bounds
established; in Section 3 the finite-element model and results for both the isotropic and
orthotropic adherend double-strap joints are tabled and in Section 4 the various
analytical models and results are given along with comparison of the finite-element
results. Conclusions are given in Section 5.
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2. The Equivalent Spring-Constant Concept

2.1 Geometry of the Double-Strap Joint

The double-strap joint (DSJ) represents a section through the central section of a
double-sided repair as shown in Figure 1. It is also representative of one-sided repairs
in which there is substantial restraint against out-of-plane bending.

Section A-A'
plate •

p tc

Figure 1. The DSJ as a Subelement of a Double-Sided Repair.

The nomenclature for the joint geometry is shown in Figure 2 below:

h 0 h a 2hi

2P . .2P

L

Figure 2. Nomenclature for the DSJ.

2
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The subscripts i, o and a refer to the inner adherend, the outer adherend and the
adhesive respectively. The material properties are similarly designated with Ei, E, and
Ea representing the Young's moduli for example.

For simplicity of mathematical modelling an infinite (L--> 00) DSJ was modelled. DSJ's
of sufficiently long overlap length are well approximated by such a model. A quarter
model of the infinite DSJ, taking account of the symmetry of the joint across its mid-
plane is shown in Figure 3.

z •,ho ha

hi

Figure 3. Quarter model of the identical adherend infinite DSJ (NB. The z and x axes are
axes of symmetry).

2.2 Definition of the Equivalent Spring Constant

Rose [2] introduced the concept of an equivalent spring constant to model partial
reinforcement of cracked substrates. The constraint imposed by the bonded composite
repair on the opening of the crack is simulated by a distribution of springs across the
crack faces. A simplified assessment of the repair efficiency arises from such an
approach. The springs across the crack faces have an equivalent spring constant, k,
which is given by:

o0" =E.kii, (1)

where ao0is the applied stress, Ei is the Young's modulus of the inner adherend and fi is
the average displacement of the inner adherend in the x direction.

Equivalently, k can be defined in terms of the complementary energy, U, [2]:

1U c 2 0' 0ru

1 a 02 
(2)

2 E.k

3
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The complementary energy, when the strains are expressed in terms of stresses, is also
given by:

gc 6= +i i Ii a 2 0o 60 + Y-a 1, o l<asa (3)
U 12 2(3

where the summations are over all the stresses present in the inner adherend, outer
adherend and adhesive respectively.

2.3 Variational bounds

As discussed in Hashin [3], a Uc functional associated with admissible stresses leads to
a lower bound on the longitudinal Young's modulus for a cracked laminate. Similarly
for the DSJ, a // functional associated with admissible stresses leads to a lower bound
on k while a Uc functional associated with displacements leads to an upper bound k:

k <k5k (4)

3. Finite Element Results

The finite element (FE) package PAFEC [4] was used to model the DSJ. A plane-strain
two-dimensional model (Figure 4) employing eight-noded isoparametric elements was
used.

z

--o L U

X

Figure 4. FE quarter-model of the DSJ showing loading and constraints.

4
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The following linear-elastic material properties were used:

adhesive
Ga =700 MPa

va = 0.35

isotropic adherends
E=71 GPa

v = 0.33

orthotropic adherends
EL = 208.3 GPa

ET= 25.4 GPa

GLT =7.24 GPa

VLT = 0.183

vTL = 0.1667

The orthotropic material properties of a typical fibre-composite material have been
simplified to those of a transversely isotropic material to simplify the analysis. The
isotropic plane is taken to be the plane perpendicular to the fibre direction and only a
unidirectional layup has been considered.

The following boundary conditions (see Figure 3.1) were applied to the model. A
uniform stress, a,,, was applied at the end of the joint and the longitudinal
displacements there constrained to be uniform across the thickness:

axx(x = L,O:< z < h .+ha + ho)= u (5)

Uxi(x=L,O:z!hi)=uxa(X=L,hi <zhI.+h

= °0(X=L,h.+ha <z h.+ha +h (6)

where the letters i, o and a denote the inner adherend, the outer adherend and the
adhesive respectively.

Other constraints on the displacements were:

U z (0•< x < L, z = 0) = 0 (7)

5
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Ux(X = O,h 1.+ha < z! h ih. +ha + ho)=0 (8)

Mesh refinement was carried out to ensure convergence of the models. Details of the
mesh refinement can be found in reference [5].

The FE value of k was obtained by taking the average of the x displacements of inner
adherend at x=O:

h.
f fU (x=O)dz (9)

hii 0x

where the integral was evaluated numerically using FE displacements and Simpson's
Rule. The average was then inserted into equation 1 and k determined.

To determine the range of accuracy of the various analytical models as compared with
the "exact" FE results it was first necessary to identify an appropriate measure of joint
configuration variation. The measure chosen was the non-dimensional parameter a
defined below:

a = BFEh h (10)

Two length scales comprise a. The load transfer length,/ 3 FE, is a finite-element estimate
of the load transfer length. The other important length scale is the St Venant length
defined, for the purposes of this study, as shown below:

St Venant Length = h E (11)
rG

Further details on fl and the St Venant lengyth can be found in reference 5.

6
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3.1 FE Results for the Isotropic Adherend Joints

FE results for a range of isotropic adherend DSJs having identical adherends is
presented in Table 1.
Table 1. FE Values of k and afor the Isotropic DSJs.

h (mm) a k (mm-')

1 0.4818 0.1303

2 0.6618 0.0887

3 0.7853 0.0698

4 0.8822 0.0585

5 0.9625 0.0507

6 1.0289 0.0449

7 1.0862 0.0405

8 1.1358 0.0368

9 1.1780 0.0339

10 1.2127 0.0314

7
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3.2 FE Results for the Orthotropic Adherend Joints

FE results for a range of orthotropic adherend DSJs having identical adherends is
presented in Table 2.

Table 2. FE Values of the k and afor the Orthotropic DSJs.

h (mm) a k (mm4 )

0.5 0.6526 0.1253

0.6 0.7069 0.1135

0.7 0.7564 0.1042

0.8 0.8031 0.0966

0.9 0.8447 0.0903

1.0 0.8828 0.0851

2.0 1.1803 0.0559

3.0 1.3379 0.0428

4.0 1.4708 0.0351

5.0 1.6080 0.0300

4. Analytical Models

An exact analysis of the stress state in a DSJ in which both the equilibrium equations
and the compatibility equations of continuum mechanics are satisfied for all three
layers and for which continuity of tractions and displacements is enforced is
prohibitively complicated. Consequently, simplifying assumptions are made in
formulating an analytical approach. A trade off between simplicity and accuracy is
usually necessary in any approach.

8
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The one-dimensional analytical models of the stress distribution in DSJs considered
here fall broadly into two categories:

(i) Those that start from a prescribed form for the displacements and in which
displacement potentials are introduced. Strains are derived from the
displacements from kinematic relationships and automatically satisfy the
compatibility equations of continuum mechanics. The stress-strain relations are
applied to determine the stresses, statical equilibrium enforced by mininising the
resulting potential energy and the result is coupled ordinary-differential equations
for the adhesive stresses. These equations can be solved for the adhesive shear and
peel stresses.

(ii) Those that start from a prescribed form for the some of the stress components in
which stress potentials are introduced. The pointwise equilibrium equations of
continuum mechanics are applied to determine the remaining stress components.
The unknown coefficients are determined by minimising the complementary
energy which ensures global compatability. The complementary energy is
expressed in terms of the stresses and the resulting functional is minimised to
yield the Euler-Lagrange equations. Coupled differential equations are again the
result and these are solved for the adhesive shear and peel stresses.

The models described above yield variational bounds for k. A further simplification of
the analysis results if the condition of constrained elasticity is assumed [6]. Such an
assumption in this context implies that for the strains in the z direction:

0 i = o =6 a =0 (12)
z z z

and furthermore for the z displacements:

W i =w 0  w a =0 (13)
z Z z

Consequently, stress cz if it exists will not contribute to the energy functional as the 6z
strain is zero.
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4.1 Models That Yield Variational Bounds

4.1.1 Upper Bounds -The Prescribed Displacement Models

4.1.1.1 Hart-Smith

Hart-Smith's model is a based on simple plate theory and assumes that the
deformation state in the adherends is one of simple stretching M7]. The critical
*assumptions are:

1) That the adherends deform purely by uniaxial tension or compression, ie, no
bending, so that the only components of displacement in the adherends are:

u 0 (x) and u (x) (14)

2) The adhesive deforms purely by shear and the strain is constrained to be:

A~x) = uX (X) - U XJI (15)
h x *
a

The complementary energy of the bonded joint becomes

uc =I I ai ±i+4co-I °0° +Ea la}a dx

(16)

h.i u h° duE

=f[# E. x+# EoC xj + f Ga G ]dx.

U, is to be minimised over the range of admissible displacement functions subject to
the constraint given by equation 4.1.1.1.2. A Lagrange multiplier, 2, can be used and
the following equation mininised:

10
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This leads to the set of equations:

d2 u i d 2 u i
A_--Elh" x -=-0,---E.h A X -o 0,+G h Y 0. (18)
h a 1 dx2  h i dx2 aaa
a a

The first two equations can be rearranged and subtracted to yield:

d 2 u d2lU 01 h
A x x a (19)

&C2 dx2 J( 1+i19

Substitution of equation 19 into the last equation of equation set 18 yields:

(d2ui d 2 A h
x X a +Gahyaa = O. (20)

(Ioho hi
dx2  dx2  aa

Taking the second derivative of equation 15 and substituting into equation 20 gives:

d2 ya h
d2 da h a +Gahay = 0. (21)

a dx 2  a aa

This can be rearranged into the form given by Hart-Smith's [71 form:

d a G -- (22)
x2  ha ~E h E.h.)a =0'

dx a O 0 .II

Thus minimising the complementary energy gives the same resulting differential
equation and as imposing statical equilibrium (Hart-Smith).

The solution of which over the semi-infinite domain is:

a (x) = yoe-x (23)

11
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where

S.2  .a + 1h (24)
h E h EA
a O0 0 1

The constant ro is obtained by recognising that load transfer occurs purely by shear of
the adhesive and that the load transferred equals croh (in this case of identical
adherends):

J Gra a (x) =oOh, (25)
0

Equation 23 becomes:

x=ohe-fi

7a (X) e (26)
a

k can be obtained form equation 1, recognising that at x=O:

h

Ux ° (O) = 0 and ux! (O) = a =- G-ohfl, (27)

a

so that

k 0 a (28)E.I i E zAih'ha)6

For identical adherend joints this reduces to:

k = A- (29)
2

Figure 5 plots values of k determined from equation 28 for various joint configurations,
confirming that the bound is an upper bound:

12
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1.5

1.4 -B Orthotropic DLJs

SIsotropic DLJs
S1.3

1.2

1.1

I I I

0 0.5 1 1.5 2

Figure 5. Plot against (x of the analytical-to-FE ratio for k - Hart-Smith.

4.1.1.2 Delale, Erdogan and Aydinoglu

Delale, Erdogan and Aydinoglu's [8] model of the stresses in adhesively bonded joints
applies Reissners plate theory to the adherends. The adherends are allowed to undergo
bending and transverse shear. Strains in the adhesive are assumed to be constant
across the thickness of the bondline.

The displacements u,, uz and the rotation 81 for the two adherends are prescribed in
terms of traction, shear force and bending moment. Equations of statical equilibrium
relate the traction, shear force and bending moment to the adhesive shear and peel
stress.

Delale et al derived the following coupled differential equations:

d 3-r dz
a a+ a +a a = 0 (30)

dx 3 2a

d 4or d 2 °" d 3 r r .(1

a__ + __ ___ adx8 +,64 " 0. (31)

dx 4 '1 dx-- +2a 3 dx---3 dx

13
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The constants are:
a1 -jc 1  +~2 +(ho+ha)hoa -G. (cý +C, + DO,

Gh,4
a2  G. 

4

ha, 2

IE.a(Il-V.) Va h, D, ±ri ( i y
l(1-va -2Va )2(-Va) 2 ha B,,Bi BNo

Ea(1-Va) Do
/2- lVa-2Va ) ha

/vaEa (C 2+ ho(ho +ha)Do,,3= 2(1_ Va -2Va'2).1 C " 4'

A' VaEa 2 (ho h0 )D,

- 2h, lVa_-2v0

where,

5 5

Bo= 1- h,, G, B= 1- vyt,

6 6

D _12(l-v v,)
El

The terms in those constants that relate to bending of the inner adherend (Di=O) can be
set to zero for the DSJ. The procedure for solving these coupled ordinary differential
equations with constant coefficients is straightforward: reducing the two equations to
one higher order equation in one of the stresses and substituting an exponential of
form e'x and solving the resulting characteristic equation for X. However, the roots of
the characteristic equations are quite complicated and messy. By numerically
evaluating the constants and using the program Mathematica [9] exact solutions can be
found though not in symbolic form.

14
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Values of k for the various joints are shown in Figure 6, also indicating the expected
upper bound:

1.3

-- Orthotropic DhJs

1.2 - Isotropic DLJs

S1.1

0.9 - '
0 0.5 1 1.5 2

Figure 6. Plot against a of the analytical-to-FE ratio for k - Delate et al.

4.1.2 Lower Bounds - The Prescribed Stress Models

4.1.2.1 Hashin

The analysis developed by Hashin [3] for cracked composite laminates is extended to
bonded joints in this section. Admissible stress states for the adherends and adhesive,
satisfying the equilibrium equations of continuum mechanics, are developed in terms
of a single stress potential, 0. The complementary energy of the joint is minimised to
yield an ordinary differential equation in q. Solution of the differential equation allows
the determination of an expression for k.

The assumed stress state is:

Inner Adherend:

a,,, = -O()i

0%. = UoO'(x)z, (32)

C.j = (To~"(x) (hi (hi + hk)- Z2)

15
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Outer Adherend:

0o*= - hi- 0'(xXhi +.-k + ka - z), (33)k

or. = aro(x'!h- + ho + hk z)Y.
20

Adhesive: a
a.u a--0,

a.' = 0-oh-n,(x), (34)

aohgh o
0zza = a o- 0-r"(x).

The complementary energy is given by:

hA+ho+h, ooU,- fz f W(x, z)dx,
U0 0

o2 2 (35)

E Et G 2-ocr

Contributions from the adherends and the adhesive are summed. This yields:

2U, = 0-2 h i2 fdxJA{2 + A1 (0)2 + A 2 #",, + A3 (0t,)2 }
0

where,

1 a 3G ' 3GittE/r+i~~hi Etho
A2=-1 ha+ I 2hi + ho~v (36)l) kVt +V

E,' EG') 3GE1 Et

3( 1 2)

A 3 h 1 - tlr ( 8 hi2 + 4 hiho + h 2 -' hIh a 1 -Va )

4Et 15 ) 20Et" 4 o Ea

Minimising U, leads to the following differential equation:

A30b"" + (A2 - A1)q5" + A0 = 0. (37)

16
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The solution of this equation over the semi-infinite domain is:

-(,)= /2 e182 -1 ', 2 1A (38)

where the following boundary conditions have been applied:

- 0(0) = 1 and 0'(0) = 0. (39)

The first condition represents equation 25 and the second that the integral of the peel
stress equals zero, ie:

foj_ (X)dX 0 (40)
0

The constants ,3 and /2 are given by:

A =- 2 jAt -A 2 ) C(A7:A 2 )2 -4A 0A 3  (1
62=_1 VAI ) 2)

From this solution for 4(x) the stress state for the joint is determined. k can be found by
integrating the complementary energy (equation 4.3.?):

_ = (P 1 2 f(A, -A 2 - A 3 )1 6 2 )+Ao(/7l2 + 3filf2 + C2 2 (42)
uc- 2/32(fl812(61+132) (42)

k is then found from equation 2.

17
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Values of k for the various joints plotted in Figure 7 below.

1.1

0.9

E- Orthotropic DLJs

08 Isotropic DLJs0.8 -

0 0.5 1 1.5 2

Figure 7. Plot against a of the analytical-to-FE ratio for k - Hashin.

4.1.2.2 Allman

Allman's analysis [10] of the double-lap joint utilises two stress potentials,
ýs(x) and 02(x), to describe the stress state of the joint, viz:

.(a -. =t 102 01 (43)
2 0o- i) 2h 9x2

1 02 0 +0") = (44)

where o-, and oa are the stresses normal to the bondline at the interface with the outer
and inner adherend respectively.

Allman models the effects of bending, stretching and shearing of the adherends and of
shearing and tearing of the adhesive layer using these two stress potentials. The
advantage of two stress potentials over one is that requirement of a stress-free
condition at the end of the adhesive layer can be accommodated:

o'a (0)= 0. (45)

18
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The form of the stresses in terms of stress potentials that Allman derives [101, with
some modification to allow for the infinite nature of joint, for the double-lap joint is:

* for the outer adherend

1 2 2h)(312 +el(3 1 )l+(x)_ 6+7 2(x)
ho (h +hi) ho0

T'O W)= 1(? hi((1+ 3e1)+ 2/-301+61)/2 )d-l +e •3"(1_172a •'o )d02

2(h+h) dx 2h 0  d(46)
0ho (l 2-- -1) _ -1 7 (1 + 3,)J ý,2 )d --2

4(ho + hi) dX 2

+.1-••r/ )dx 2 ,

where 77 = ho/2 and -i=hAh

* for the inner adherend

1i k4

do, - h 7h + hi
/ d•b r/+l

"t-y =- dx hi+h' (47)

-d
2q•2  d2 51  1 {

rYi = ddx 2  dx2 h+ h2a +d 201 1(3-24 -r7 2) ,

where q = h¢/2

for the adhesive
a dOb 2

T =ty dx h +kh

a d2 q02  
ha d 20 1  

(48)

= x2  "h1 + dx2

where q = h,/2.

The strain energy of the joint is expressed in terms of the stress potentials and then
integrated over z and x. The resulting functional is:

19



DSTO-RR-0139 T 1012 +a2 022 + a3A0S 2 +a4(01, )+ +a5(0j2

F f +a, (01 21)+ a, (0ý1±+a8 (0b2 11 +a 9 01 11 02
11  (49)

0 + a,0111 + a,1 0,015 1 + a1 2 02 01 1 + a1 3q052 52

where the constants al to a13, for an all-isotropic adherend join, are given by:

1 (12(1-v.2) + (1- v0 
2 ý4 + 6e, + 3•12g)' (h,+ho7k Eihi EAh

a2 ,Eoh3

1 12(1±+Ce1-Vo)ct3 ( ) Eoho2

a4 = 1 2h1.)2 Kh+2ha + ho (4+36i+9e.2)c:,-(hi + hy •.3 Gi G,, 15 Go

3a 5 =--5Goho

a6 = ( 2 + 6
5•Go(hi +h,) 2

a - 7E,,Eohi (5ha2+ 20h+hi +8 hi2 Xl- Vi2 )Ei(35EohE3 - 3(4+ 22e•1 + 39612)01 - Vo2)21OE0,EE. (h1+hk)2

a8  hi (1-Vi 2)1 v)
2 E. 2Ea 70E-o 0

10 +h0 )-(E1h2(1 _v"2Xl +239sx)_35Eohi(3ha +2hi))

a = O5EiEo(hi + h( )

_= 1 (3k+2h. X1- vOv+ 2 ho(4+18e + 9, 12I-Vi)V
1o(hi + hk)3 Ei 15 Eo ,

a, l ((la+69eXl-vo)vo -2 -- iVi
a10 = (hi + h, ) 5E15
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1 (1 + 6elXl- vo)v,
2=(hi + h 5E,

a13 0
5Eoh0

which is minimised to yield Euler-Lagrange equations for the two potentials. These
coupled differntial equations are of the form:

2(a 1 +(a,10 - a 4 )D2 + a 7D4 )01 + (a3 +(a11 + a 12 -a 6 )D2 +-a9D 4)0 2 =-0 (50)

and,

(a 3 + (at11 +Ia 12 -a 6 )D 2 + a9 D 4 )01 + 2(a 2 +-(a13 -a 5 )D2 + a8 D 4)0 2 =0 (51)

These equations can be combined to give the following eigth-order differential
equation for (2:

d202 d402 d602 d 8 02
2 - 4 d6+ =0 (52)

where/l1 to,65 are related to a] to a13 by:

/?l= =-4a•a 2 + a 32

62 =4(a,(a5 -a 1 3)+a 2 (a 4 -alo)+-a 3(a11 +a12 - a 6 ))

/33 = (a•l +-a1 2 -a 6 ) 2 -4((a 1°- a 4Xa 3 -a,5 )+ a 2a 7 + ala8 ) + 2a3a9

/64 =-4a 7(al 3 -a 5 )+4a8 (al. -a 4)+2a9 (a,1 +a1 2 - a 6)

/35 = -4a 7a8 + a992

Equation 52 involves only derivatives of even powers and so, in effect, reduces to a
fourth order differential equation. Consequently, solutions for 42[x] that decay to zero
as x approached infinity are of the form:
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0b2[x] = AE-xF- + BE-F'- + CE-xF-- + DE-X4- (53)

where the constants 2, to 24 are real roots of the quartic:

A- +-/ 2u +/- 3 u 2 +,3 4 u 3 +-• 5u
4 = 0 (54)

-The roots 2A to 24 all had positive real parts for the joint parameters investigated.
Typically, 2, to 24 are real and 24 and 24 are complex conjugates. The stress
potential, 4i[x], has the same form as ý2[x]:

01 [x] = EE-X- + FE-xv4- + GE-F- + HE-V4- (55)

The constants, E, F, G and H are related to A, B, C and D by:

E=Aa 3 +-(al I- + a 12 - a 6 )21 +q a 9 12 (56)
2(a, + (alo -a 4)A, +a7A)

F=B a 3 +(a + a12 -a 6),2 +a9 22  (57)
2 (a, +(al 0 -aC4)X +aC7 A2)

G=C a 3 +(a,1 + a 2 -a 6)k +a9232  (58)
2(al + (a 1o - a 4)23 + a 72 3)

H=D a 3 + (a•1 , + a1 2 - a6)Z4 +a 42 (59)
2(a,1 + (al1 0 --a 4 )-Z4 -+ a72'4 )

The boundary conditions applied to the two stress potentials were that:

°(0) = o =:: ý1[0] == o60 S(60)

dx

Vo(x)-->O0asx --> c=> [0] == 0 (61)

Jar (x)dx = -F =:>o1[0] = -F hi + h, (62)
0 2

Mo(x)---0-asx --> oo = 2[0] = 0 (63)
dx
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where M, and V, are the bending moment and shear force resultants in the outer
adherend respectively.

Once the two stress potentials are determined k can be found by integrating U, directly
via equation 2.

The results are shown in Figure 8 for the two types of joints.

-- •0.9

SOrthotropic DLJs

"-*-Isotropic DLJs

0.8'
0 0.5 1 1.5 2(X

Figure 8. Plot against cc of the analytical-to-FE ratio for k - Allman.

4.2 Constrained Elasticity Models

The constrained elasticity models impose the additional constraint (transverse-
inextensibilty) that:

6=o = .(64)

Constrained elasticity models have been used successfully by Savoia and Tullini [11] to
derive a beam theory for strongly orthotropic materials. This approach can be used
when the height of the beam is sufficiently small with repsect to the length or when the
Young's modulus. The stress tensor then divides into an active and a reactive part. The
reactive part, q, does no work for any admissible deformation.
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For bonded joints, which are typically long and slender and often have orthotropic
adherends, transverse inextensibility applies to both adherends:

u' ,, =0 => ui°,%(x,z)= viO(x). (65)

Symmetry imposes the following boundary condition:

ui_- (x,0) = Vi (x) = 0.- (66)

Within the constrained elasticity format it is possible to prescribe the format of either
the displacements or the stresses. The guarantee of true upper or lower bounds is lost
however. These two approaches are described below.

4.2.1 Prescribed Displacement Model

The form of the displacements in the adherends can be specified using the polynomial
form adopted by Savoia and Tullini [11]:

Uix (X, ) = 1 P 2 n (Ot2n (X),, (67)
0

where =2z/hi.

The polynomials P2, are defined by a recurrence relation:

P- =,11 PI ,d 2P -Pn -2 for n 2. (68)

PA also has the useful property that:
1 

1

JPrd = J4PRd4=0 forn_>2. (69)
-1 -1

This leads to the interpretation of 00(ý) as the thickness-averaged value of uix.

A solution to order P2 can be obtained as follows. For the inner adherend the
displacements are:

ui-(x, = ui(x)+ El(ýDi(X)± P(ý)02(X)
=Ui(X)"b-il (X)' + - g2 V(2 (X)t (70)

6
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The shear stress in the adherend is then:

a Xý(x, G idz (I, O I(X)+ P2(ý V2 X))(71)

.The boundary condition on the inner adherend shear stress is:

Oax¾ (X, • = +l) = (72)

which implies,

0i2(X) = -h-i -(x) and (D,(x) = 0. (73)
Gi

So that,

u ix(x,•)= ui(x)--hi (1-,2 )_r(x)., (74)

Gi 6 (4

Similarly, for the outer adherend:

UO.(X, )UO(X) + PI (ý)•o(D 1) + P2 (ýo (X)
=uO W)+ 00)1 W)+ (1_ 3ý2)OO2(x). (75)

6

The boundary condition on the outer adherend shear stress is:

ar&xý (x, = ±1) = -r(x). (76)

So that,

(D02(x)=--o z'(x) and (DO, (x) = 0,

UO.(x )=uO(x)+ ho (1 W ()77

G, 6

As for the Hart-Smith analysis, the complementary energy of the bonded joint becomes
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U,= JJ -- c( +~ 0 + 1 -,a-,a dz dx
02 a2

(78)

f Ei (tui 2 +kEho (-) 2 +G.(ha )2jdx" 2 2• dx ) 2 2,

U, is to be minimised over the range of admissible displacement functions subject to
the constraint given by equation

;v(x)= -li( 0(x, -i)-uxi(x,ý )
h X

a

(u - - + (79)

=(u -,) 1
--- U G ( h. + hi h+ "

•G,, i G-+do

A Lagrange multiplier, 2, can be used and the following equation minimised:

, o Ak I h k (u0-u') (80)

This leads to the set of equations:

2, d 2 ui 2• d2 ut

-- Eh 0 -', -- hl 0,2+Gaara= 0. (81)
ka iz dX 2  k ilI X
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These equations can be solved to yield solutions for the displacements. k can be
determined from the same approach as used in the Hart-Smith analysis.

Figure 9 plots values of k determined from equation 2 for various joint configurations:

1.2

1.1 ± -" - -

0.9 * Orthotropic DLJs

* Isotropic DLJs

0.8 1 1

0 0.5 1 1.5 2

Figure 9. Plot against cc of the analytical-to-FE ratio for k - S&V/Rose.

4.2.2 Prescribed Stress Models

Prescribed stress models can also be developed within the constrained elasticity
framework. Two models are developed - one that models adherends tractions only and
one that models tractions and moments.

A slighlty different nomenclature is used in the following two models: the inner
adherend thickness is taken as hi rather than 2hi as previously.

4.2.2.1 Tractions Model

The adherend stresses are defined in terms of inner adherend traction, Ni, and the
outer adherend traction, N,:

cT -() , (
h o_(82)

h,2
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The other active stresses are determined from the equilibrium equations:
r

a i.z(X, Zi N. (x___ ),

hi (83)

cro.(xxz,)= No (x 1 '

where zi and z, are coordinate systems local to the inner and outer adherends
respectively.

The boundary conditions are:

a'. (x,h)= 0,
a ixz(XO)= 0,(84)

c0xz (x,-h / 2) = No (x),

cra'(x,+h / 2)= 0,

The complementary energy, equation 3, is constructed and minimised and the resulting
Euler-Lagrange equations solved to give:

y. (x) = yoe-Ix, (85)

28



DSTO-RR-0139

where, for an orthotropic material:

=2 + ,,t h-+ h. + h0. (86)

E, h0  E,'h, ).Ga 6G,,' 3Gt,°

k is given by equation 29 for an identical adherend joint. Plots of k are shown in Figure
10 below.

1.2

1.1 1 A A AAi

0.9 e Orthotropic DLJs
A Isotropic DLJs

0.8'
0 0.5 1 1.5 2

(X

Figure 10. Plot against a of the analytical-to-FE ratio for k - S&V/ Rose.

4.2.2.2 Tractions And Moments Model

The adherend stresses can be defined in terms of tractions and moments:

ai(x)= N=,(x)
hi _(87)
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The other active stresses are determined from the equilibrium equations:

Uj'=(x, zi)=-2z,. N, x)
hix)

h( . 2J = (88)

(Xo)= NO (x 2 h,_+o ,x 4 21o

The boundary conditions, equations 84, are satisfied by these equations.

The complementary energy, equation 3, is minimised and the resulting Euler-Lagrange
equations solved. The resulting expressions were very complicated. By numerically
evaluating the constants and using the program Mathematica exact solutions were
found though not in symbolic form.

k can be determined from integrating the complementary energy. Plots of k are shown
in Figure 11 below.

0.9

"0. - Orthotropic DLJs

- Isotropic DLJs

0.7 '

0 0.5 1 1.5 2

Figure 11. Plot against a of the analytical-to-FE ratio fork - S&V/Rose.

30



DSTO-RR-0139

5. Discussion and Conclusions

Expressions that yield variational bounds for the equivalent spring constant of the
double-strap joint have been obtained. These expressions should be useful in obtaining
more exact estimates of the stress intensity factor associated with patched cracks.

"True upper bounds were obtained from the Hart-Smith and Delale et al displacement
based models. The Hart-Smith model is used in RAAF Engineeering Standard C5033
and gave the least conservative results. Delale's model gives improved results but is a
mathematically complicated formulation.

True lower bounds for the equivalent spring constant, which are useful for obtaining
truly conservative estimates for patched cracks, were obtained from the Allman and
Hashin stress-based models. The Hashin model was more accurate for the joints
considered, especially for orthotropic joints.

.The constrained elasticity models worked quite well although the guarantee of true
upper or lower bounds was lost. However, the tractions and moments model gave
conservative results over the range of joints considered.

The Hashin model was the probably the best model considered - it gave truly
conservative estimates of k, was reasonably accurate over a wide range of joint
parameters and an analytical expression was obtained for k.
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